
Abstract 
 

In this paper, the authors describe the hardware and soft-

ware components of an intelligent system that is able to 

wirelessly control the movements of a robotic arm for mim-

icking human arm gestures. For the implementation of the 

system, a laptop computer, 3D wireless motion tracking 

sensors, an artificial neural network (ANN) classifier, and a 

microcontroller were used to drive the six-degree-of-

freedom robotic arm. Results demonstrated that the robotic 

arm is capable of mimicking motions of the human arm. 

The overall accuracy of the ANN classification system was 

88.8%. Due to limitations of non-continuous rotation ser-

vos, some movements had to be limited or changed in order 

for the robotic arm to perform as an equivalent to a human 

arm. 

 

Introduction 
 

Robotic technologies have played and will continue to 

play important roles in helping to solve real-life problems. 

One of the most important fields in the development of suc-

cessful robotic systems is the human-machine interaction 

(HMI). In this paper, the authors describe the development 

of a system that uses an ANN classifier to control a robotic 

arm that is able to mimic the movements of a human arm. In 

this study, the user was able to directly control a six-degree-

of-freedom (6-DOF) robotic arm by performing arm mo-

tions with his/her own arm. The system uses inertial meas-

urement units to sense the movements of the human arm. 

 

Alternative approaches that have been used to develop 

human-machine interaction include the use of electromyog-

raphy (EMG) signals to capture and analyze electrical activ-

ity in human muscle tissue [1, 2]. However, due to the elec-

trical signals being minuscule, processing the data using this 

method is difficult. Other techniques that have been used 

include gyroscopes and accelerometers. For example, Sek-

har et al. [3] developed a low-cost wireless motion sensing 

control unit using three sensors: accelerometer, gyroscope, 

and magnetometer. They used a three-degree-of-freedom 

robotic arm to control the elbow and wrist positions. Matlab 

software was used to process the signals coming from the 

sensors and generate the pulse width modulation (PWM) 

signals to control the servomotors; the accuracy of the de-

veloped system was not specified. An alternate approach 

that recently has started to gain popularity among research-

ers is to track muscle activity using inertial measurement 

units (IMUs) and air pressure sensors [4, 5]. IMUs integrate 

an accelerometer, a gyroscope, and a magnetometer togeth-

er to measure three-directional static and dynamic move-

ments. Malegam and D’Silva [6] developed a mimicking 

robotic hand-arm using flex sensors for individual fingers 

and multiple three-axis accelerometers. Using four encod-

ers, they divided individual processing units for the fingers 

and arm to increase the processing speed. They also used a 

high-speed microcontroller to control the input and output 

processing, then developed a glove to house all of the com-

ponents for a user to wear.  

 

Tracking System Operation 
 

In this current study, the authors designed and developed 

a wireless control system to give commands to a robotic 

arm. The commands were given by a human subject wear-

ing two IMUs on his/her arm. Figure 1 shows the selected 

IMU location. The IMU contained an accelerometer, a gyro-

scope and a filter in a small unit [7]. The robotic arm had 

six degrees of freedom and could perform elbow, wrist, and 

shoulder joint movements. Figure 2 shows the robotic arm 

used in this study. Kalman filtering was also integrated into 

the IMU software to reduce potential noise and to produce 

smooth signal data. 

Figure 1. Subject Wearing the Two Inertial Measurement 

Units (IMUs) 
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Figure 2. Six-DOF Robotic Manipulator 

 

After obtaining movement activity information from the 

IMUs, the data were then fed into a trained ANN. An ANN 

is an adaptive and powerful artificial intelligence (AI) tech-

nique that is used to classify the inputs of a biological sys-

tem. The ANN has the ability to recognize both linear and 

nonlinear relationships between input and output data, simi-

lar to the human brain. Because of this, ANNs are widely 

used for data classification and pattern recognition. Figure 3 

shows the basic structure of an ANN. 

Figure 3. Schematic Diagram of a Multilayer Feed-Forward 

Neural Network 

 

The ANN processes information using various layers that 

are linked together: the input layer, the hidden layer, and the 

output layer. Each layer is composed of interconnected 

nodes that represent neurons. Data are fed into the input 

layer, which connects to the hidden layer, and the hidden 

layer connects that output to the output layer. All of the 

connections are weighted, and individual weights are modi-

fied as the network is trained. The ANN learns by example, 

using an algorithm called backpropagation, also known as 

the backwards propagation error. The ANN receives input 

data repeatedly and then makes a guess about the corre-

sponding output and then compares it to the actual output. 

The hidden layer computes an error that will be fed back 

into the network to adjust the weights. Each input and hid-

den layer neuron’s value is multiplied by a predetermined 

weight. The weights are meant to minimize the error as 

much as possible to minimize misclassifications.  

 

The weighted input layer and the weighted hidden layer 

are then summed together. If the summation does not equal 

one, then adjustments will occur during each cycle, or 

“epoch,” until the summation is as close to one as possible, 

which means the error cannot be minimized further and this 

input corresponds to an output. This is called training the 

ANN. Rote memorization can occur if the network is 

trained to recognize only one type of input. This is called 

over-training the system. For an ANN to work properly, it 

must be trained with various types of input data to a desired 

output. After training the system, it will be able to see new 

input data and adjust the weights accordingly in order to 

produce an accurate output [8-11]. The ANN then deter-

mines the corresponding movement that is performed by the 

user, based on the test set that was used to train the ANN. 

After the network decides the movement, this information is 

sent to the robotic arm to emulate the human arm motion. 

 

Main System Components  
 

Figure 1 shows the 3D wireless motion tracking sensors 

IMUs [7] that were placed on the human subject’s arm at 

two locations—the wrist and the upper arm. At a sampling 

rate of 100 Hz, the sensors tracked the XYZ-coordinates, 

inertial data, and the Euler angles of the subject's arm as he/

she performed a specific movement. Nine pre-defined arm 

motions were selected for detection in this study. The raw 

data (XYZ-coordinates from the IMUs) were processed 

computing the root mean square (RMS) and the average 

rectified value (ARV). Normalized data were then used to 

train a multilayer, feed-forward ANN to classify the arm 

motions. The Matlab Neural Network toolbox software was 

used for the design and implementation of the ANN classifi-

er. An Arduino microcontroller was used to control the ser-

vo motors in the robotic arm. The Arduino was directly in-

terfaced to the laptop computer implementing the ANN 

classifier. The data set used for training the ANN in this 
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study consisted of 180 data vectors (from four different sub-

jects, each of which performed each motion five times). 

Seventy percent of the data was used for training the ANN, 

10% for validation, and 20% for testing. A totally independ-

ent set of arm motions (from a 5th subject) was used to de-

termine the accuracy of the ANN classification system.  

 

The main components used in the implementation of the 

system were: a) an IMU board composed of a digital three-

axis accelerometer and a digital three-axis gyroscope [7];  

b) a ZigBee RF wireless communication module [12] to 

transmit and receive data; c) a low-cost microcontroller, 

Arduino Mega [13], to control the input and output pro-

cessing; d) a  6-DOF robotic arm that used servo motors to 

control the joint positions (see again Figure 2)—the servos 

were controlled using PWM signals; and, e) a Kalman filter 

that was used to reduce noise and have smooth signal data 

from the accelerometers and the gyroscope. Figure 4 shows 

the interaction of these components.  

Figure 4. Main Components of the Wireless Robotic Control 

System 

 

Methods 
 

The human subject performed one of the pre-defined arm 

movements and Xsens Technologies’ [7] software captured 

the waveform of the acceleration data. These data were then 

exported into an Excel spreadsheet and imported into 

Matlab. The sampling rate of the sensors was 100 Hz and 

each arm movement took approximately three seconds to 

perform. After the sensor data were collected, Matlab func-

tions were used to calculate the RMS and ARV values. 

These values are then fed into the trained ANN. The ANN 

then determined the corresponding arm movement that was 

performed by the human subject. The corresponding arm 

movement was then performed by the robotic arm.  

 

Description of the Arm Movement 
 

To capture the arm’s movements, two IMUs were used. 

Figure 2 shows that sensor 1 was placed on the person’s 

upper arm and sensor 2 was placed closest to the wrist. Sen-

sor 1 signifies the unit on the person’s upper arm and sensor 

2 signifies the unit on the person’s wrist. There was a total 

of nine pre-defined arm movements that the ANN could 

identify and the robotic arm could mimic—arm extension, 

arm raise, arm raise elbow bend, clockwise windmill, coun-

terclockwise windmill, shoulder touch, side arm raise, wipe 

right, and wrist rotation. Figure 1 shows that the arm move-

ment used the same initial position—straight down by the 

person’s side, fingers pointing to the floor. For all of the 

following descriptions of arm movements, the initial start-

ing position was for the person to be standing, the arm and 

hand fully extended on the side of the body, and the palm 

facing the body.  

 

Motion 1: Arm Extension. When performing the arm exten-

sion movement from the starting position, the person first 

bends the elbow until the forearm is parallel to the floor, 

then extends the full arm all the way forward, maintaining it 

parallel to the floor, and then returns to the initial position. 

Figure 5 shows the acceleration waveforms obtained during 

the arm extension motion. 

 

Motion 2: Arm Raise. When performing the arm raise 

movement, the person starts in the initial position. Without 

bending the elbow, the person raises the arm up to shoulder 

height and then returns to the initial position. Figure 6 

shows the acceleration waveforms obtained during the arm 

raise motion. 

 

Motion 3: Arm Raise Elbow Bend. When performing the 

arm raise elbow bend movement, the person starts from the 

initial position, next raises the full arm to shoulder height, 

bends the elbow inwards towards the body until the forearm 

touches the biceps, and then returns to the initial position. 

Figure 7 shows the acceleration waveforms obtained during 

the arm raise elbow bend motion. 

 

Motion 4: Clockwise Windmill. When performing the 

clockwise windmill from the initial position, the person 

rotates the shoulder 360 degrees clockwise and then returns 

to initial position. Figure 8 shows the acceleration wave-

forms obtained during the clockwise windmill motion. 
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(b) Sensor 2 

Figure 5. Acceleration Waveforms for Arm Extension 

(a) Sensor 1  

(b) Sensor 2 

Figure 6. Acceleration Waveforms for Arm Raise 

(a) Sensor 1  
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(b) Sensor 2 

Figure 7. Acceleration Waveforms for Arm Raise Elbow Bend 

(a) Sensor 1  

(b) Sensor 2 

Figure 8. Acceleration Waveforms for Clockwise Windmill 

(a) Sensor 1  
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Motion 5: Counterclockwise Windmill. When performing 

the counterclockwise windmill from the initial position, the 

person rotates the shoulder 360 degrees counterclockwise 

and then returns to the initial position. Figure 9 shows the 

acceleration waveforms obtained during the counterclock-

wise windmill motion. 

 

Motion 6: Shoulder Touch. When performing the shoulder 

touch movement from the initial position, the person bends 

the elbow until the hand touches the shoulder and then re-

turns to the initial position. Figure 10 shows the acceleration 

waveforms obtained during the shoulder touch motion. 

 

Motion 7: Side Arm Raise. When performing the side arm 

raise from the initial position, the person lifts the arm 

straight from the side 90 degrees until it is parallel to the 

floor, then returns to the initial position. Figure 11 shows 

the acceleration waveforms obtained during the side arm 

raise motion. 

Motion 8: Wipe Right. When performing the wipe right 

movement from the initial position, the person bends the 

elbow until the arm is parallel to the floor, then rotates the 

forearm to the right as far as possible and then returns to the 

initial position. Figure 12 shows the acceleration waveforms 

obtained during the wipe right motion. 

 

Motion 9: Wrist Rotation. When performing the wrist rota-

tion from the initial position, the person bends the elbow 

until parallel to the floor, rotates the wrist inward and back 

again, and then returns to the initial position. 

 

Artificial Neural Network 
 

The robotic arm’s controller had to be trained to distin-

guish among the arm’s various movements. To make this 

possible, an ANN was used as a classifier to identify the 

specific arm movement to perform. The ANN was trained 

using the backpropagation algorithm and the triaxle acceler-

(b) Sensor 2 

Figure 9. Acceleration Waveforms for Counterclockwise Windmill 

(a) Sensor 1  
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ation sampling data obtained from the IMUs. There was a 

total of 20 data sets for each motion. As mentioned previ-

ously, the IMU sampling rate was 100 Hz and each arm 

motion took approximately 3 to 5 seconds to complete. 

Each data-capture trial contained hundreds of individual 

data points. To reduce the size of the data sets, and be able 

to utilize the sets to train the ANN, the data sets were con-

densed into two statistical measurements for each sensor: 

the average rectified value (ARV) that can be calculated 

using Equation (1), and the root mean square (RMS) value, 

that can be calculated using Equation (2). The ARV is the 

average of the absolute values in the data set, whereas the 

RMS is the square root of the average. This would create a 

characteristic value that could be used as an input for the 

ANN.  

 

(1) 

 

 

 

(2) 

 

The size of the final training matrix was 12x265. This 

corresponds to having 12 input nodes that are signals com-

ing from the X-Acc, Y-Acc, Z-Acc coordinates, from sensor 

1 and sensor 2, each having the computed ARV and RMS 

values (3x2x2). The length of each vector was 265 samples; 

this was selected by looking at the 3-5 second signals and 

selecting enough samples to have reliable information from 

the IMU. A target set matrix (output) with 9 rows by 265 

columns was constructed to train the ANN with the correct 

output values that should be learned. Each of the 9 rows 

corresponded to a particular motion, while the length of the 

matrix mirrored the training set. Each movement’s row had 

a 1 in its output cell, if the current trail matched, otherwise 

it had a 0. 

 

The data set was divided into three batches: training, vali-

dation, and testing. During the training stage, the network 

ran through epochs, or iterations, and attempted to minimize 

the error until it could not progress further. The training set 

used 70% of the total database, 20% for the validation pro-

cess, and 10% for the testing stage. 

 

(b) Sensor 2 

Figure 10. Acceleration Waveforms for Shoulder Touch 

(a) Sensor 1  
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(b) Sensor 2 

Figure 11. Acceleration Waveforms for Side Arm Raise 

(a) Sensor 1  

(b) Sensor 2 

Figure 12. Acceleration Waveforms for Wipe Right 

(a) Sensor 1  
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The validation stage was used to test the network pro-

gress, and signal when to stop the training, while the testing 

stage was used to measure the accuracy of the trained net-

work. The database for the construction of the ANN consist-

ed of 180 arm movements collected from four different sub-

jects. Each subject performed each motion five times. The 

network architecture was constructed by selecting the 

amount of hidden neurons to place in the hidden layer of the 

network. This number can be tuned, but the general rule of 

thumb that was followed was to select a number somewhere 

between the number of inputs and outputs. For this study, 

there were 12 inputs and 9 outputs, so 10 neurons were 

placed in the hidden layer. The ANN was trained until the 

mean squared error of the output vector was minimized. 

 

Robotic Arm 
 

Figure 2 shows that the robotic arm used in this study had 

six degrees of freedom and used seven servo motors. Each 

servo had an individual signal port, with the exception of 

the two shoulder joint servos, which were driven in tandem. 

The six servos controlled base rotation, shoulder rotation, 

elbow rotation, writs rotation, wrist pitch, and grabber. Ini-

tially, a separate program was developed to model the de-

sired movements using user-input angle writes. This al-

lowed the authors to see how the arm would need to move 

in order to execute the proper movement. The robotic arm 

was programmed to receive input voltages (PWM signal) to 

each servo, corresponding to the particular motion classified 

by the ANN system. Then the robotic arm executed the 

movements in a predetermined sequence when the com-

manded motion had been completed: the robotic arm paused 

for about 5 seconds and then returned to the starting posi-

tion.  

 

The movements were set up so that the motors were 

stepped through a range of angles until reaching the desired 

position. This was accomplished using “for loops” and time 

delays to make the movements smooth rather than abrupt. 

The implementation of the ANN was performed using the 

ANN toolbox from Matlab. Once the ANN identified the 

specific arm movement, it would automatically transition to 

a program in which each servo motor was assigned a corre-

sponding control signal (PWM). This was possible by inter-

facing the computer running the Matlab software with an 

Arduino microcontroller. 

 

Testing the Arm Extension Motion 
 

The robotic arm was capable of mimicking the motions of 

a human arm in real time. As an example, consider the arm 

extension motion, which entails bending the elbow until the 

arm is parallel to the floor, then extending the arm all the 

way forward. Figure 13 shows the initial position, then the 

subject begins to bend his/her elbow until the arm is parallel 

to the floor, as shown in Figure 14.  

Figure 13. Subject in Initial Position 

Figure 14. User Bends Elbow until Parallel to the Floor 

 

Figure 15 shows that, after the person’s elbow is parallel 

with the floor, he/she then begins to slowly extend the arm 

until it is fully extended, as shown in Figure 16. While the 

person performs these movements, the XYZ acceleration 

data are acquired and imported into Matlab, which com-

putes the RMS and ARV values for each coordinate. This 

information is then fed into the ANN. The network outputs 

the corresponding commands that the robotic arm should do 

to perform the arm extension movements. 
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Figure 15. User Slowly Begins to Extend Arm 

Figure 16. User Extends Arm 

 

When the robotic arm is powered up, the arm assumes the 

initial position shown in Figure 17, and holds it until further 

input is received. Figures 18-20 show the corresponding 

arm extension motions performed by the robotic arm, mim-

icking the human arm movement described above. In partic-

ular for the arm extension motion, Figure 17 shows the ro-

botic arm at the initial position that corresponds to a posi-

tion of 10 degrees on the shoulder’s servo motor, and 180 

degrees angle on the elbow’s servo motor. Then, the robotic 

arm begins to bend the elbow’s joint until parallel to the 

floor (90 degrees on the elbow’s servo motor), as shown in 

Figure 18.  

Figure 17. Robotic Arm in Initial Position 

Figure 18. Robotic Arm Bends Elbow until Parallel to the 

Floor 

 

Figure 19 shows that, after the robotic arm is parallel to 

the floor, it begins to extend itself by moving the shoulder’s 

servo approximately 55 degrees. Figure 20 shows that, as 

the arm extends the angles for the shoulder and elbow 

joints, they have to be adjusted so that the arm maintains a 

horizontal position with reference to the floor. Once the 

robotic arm has performed the complete set of movements 

for the arm extension motion, the robotic arm returns to the 

initial position and waits for the next command. 
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Figure 19. Robotic Arm Slowly Begins to Extend Its Arm 

Figure 20. Robotic Arm Fully Extended 

 

Results 
 

To determine the accuracy of the ANN classification sys-

tem, an independent volunteer was asked to perform each of 

the nine motions. The accuracy of the classification was 

88.8% (one motion was misclassified by the ANN). Due to 

the mechanical limitations of the robotic arm used in this 

study, not all of the nine motions were able to be performed 

exactly as originally intended. The main reason for this was 

that the robotic arm was designed to be mounted and oper-

ate in a horizontal position, as shown in Figure 20. Thus, in 

order to better mimic human arm movements, it would be 

necessary to use a robotic arm that can be mounted and op-

erate in a vertical position. Due to this limitation, there were 

three human arm movements that the robotic arm was not 

able to perform exactly, namely: the wipe right, the counter-

clockwise windmill, and the clockwise windmill. 

Conclusions 
 

The overall system was able to perform the commanded 

movements in real time, with a small delay of about three 

seconds, due to the signal processing time required on the 

computer. This delay can be reduced by interfacing the 

Xsens Technologies’ software directly with Matlab, so that 

the intermediate step of importing the signals captured by 

the Xsens technology into an Excel spreadsheet is removed. 

The robotic arm mimicking system was successful, but cur-

rently unilateral. The ANN performed very well. In the test 

with the independent subject, the ANN was able to correctly 

identify eight of the nine motions (88.8%). This accuracy 

can be improved by expanding the database that was used to 

train, validate, and test the ANN. Only motions from four 

subjects were used to train, validate, and test the ANN, and 

motions from a fifth subject were used as independent mo-

tions to compute the accuracy of the system. Currently the 

system is unilateral; that is, the human subject is the one 

that sends signals to the robot. Adding haptic feedback, 

however, the robotic arm would be able to send signals to 

the human subject, making a bilateral system that could 

expand the possible applications. 

 

Potential applications of robotic mimicking include the 

manufacturing and medical industries. Manufacturing com-

panies can use such a system in a way that a person can 

teach a robotic structure specific actions to perform without 

having an expert programmer. Robotic limbs can be inte-

grated with this system to help amputees or people with 

disabilities, so that this system can help these individuals in 

providing arm movements or improve physical therapy and 

the improvement of motor skills.  
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